

JEE Main – 2024

1st February 2024 (Evening Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- The question paper consists of 3 Subjects (Subject I: Mathematics, Subject II: Physics, Subject III: Chemistry). Each Part has two sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- 4. Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. You will NOT be allowed to attempt the sixth question. If you wish to attempt any other question apart from the five already attempted, then you will have to delete any one response from the five previously answered and then proceed to answer the new one.

The answer to each question should be **rounded off to the nearest integer**.

- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.

Marking Scheme

- **1.** Section 1: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUBJECT I: MATHEMATICS

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1.	Let α and β be the roots of the equation $px^2 + qx - r = 0$, where $p \neq 0$. If p, q and r be the consecutive							
	terms	of a non constan	nt G.P. a	nd $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$, t	hen the	value of $(\alpha - \beta)^2$	is:	
	(1)	$\frac{80}{9}$		20	(3)		(4)	8
2.	If the	mirror image of t	the point	<i>P</i> (3, 4, 9) in the	e line $\frac{x}{3}$	$\frac{-1}{3} = \frac{y+1}{2} = \frac{z-2}{1}$	- is (α,β,	γ), then 14 ($\alpha + \beta + \gamma$) is:
	(1)	138	(2)	132	(3)	102	(4)	108
3.	Let Aj	ay will not appe	ar in JE	E exam with pr	obability	$p = \frac{2}{7}$, while b	oth Ajay	and Vijay will appear in
	the ex	am with probab	ility $q =$	$\frac{1}{5}$. Then the pr	obability	, that Ajay will a	appear ir	n the exam and Vijay will
	appea	r is:						
	(1)	$\frac{18}{35}$	(2)	$\frac{9}{35}$	(3)	$\frac{3}{35}$	(4)	$\frac{24}{35}$
4.								on such that $f(0) = 2$ and
	$\lim_{x \to -\infty}$	f(x) = 1. If $f'(x)$	$f(x) = \alpha f(x)$	$+3$, for all $x \in$	R , then	$f(-\log_e 2)$ is equ	ual to	·
	(1)	5	(2)	3	(3)	9	(4)	7
5.	The n	umber of solutio	ns of the	equation $4\sin^2$	$x - 4 \cos \theta$	$s^3x+9-4\cos x$	$= 0; x \in [$	-2π, 2π] is:
	(1)	0	(2)	1	(3)	3	(4)	2
6.	Let P	and Q be the po	oints on t	the line $\frac{x+3}{8} =$	$\frac{y-4}{2} = -$	$\frac{z+1}{2}$ which are	at a dist	tance of 6 units from the
	point	R (1, 2, 3). If the	centroid	l of the tringle P	QR is (α	(β,γ) , then α^2 +	$\beta^2 + \gamma^2$ is	5:
	(1)	24	(2)	36	(3)	26	(4)	18
7.	Consid	der 10 observati	ions $x_1, .$	x_{2},x_{10} such	that $\sum_{i=1}^{10}$	$(x_i - \alpha) = 2$ and	$\sum_{i=1}^{10} (x_i -$	$(-\beta)^2 = 40$, where α, β are
	positiv	ve integers. Let t	the mear	n and the varia	nce of th	e observations l	be $\frac{6}{5}$ and	d $\frac{84}{25}$ respectively. Then
	$\frac{\beta}{\alpha}$ is	equal to:						
	(1)	$\frac{3}{2}$	(2)	2	(3)	$\frac{5}{2}$	(4)	1
8.	Consi	der the relatio	ns R ₁	and R ₂ defi	ned as	$aR_1b \Leftrightarrow a^2 + b^2$	$^{2} = 1$ for	$r all a, b \in \mathbf{R}$ and
	(a,b)F	$R_2(c,d) \Leftrightarrow a+d =$	b+c for	r all (a, b), (c, d)	$\in \mathbf{N} \times \mathbf{N}$. Then:		
	(1)	Neither R ₁ no	or R_2 is	an equivalence	relation			
	(2)	Only R_2 is an	equivale	ence relation				
	(3)	Only R_{l} is an	equivale	ence relation				

(4) R_1 and R_2 both are equivalence relations

9.	Let m	n and n be the	coefficie	ents of seventh	and thi	rteenth terms	respectiv	vely in the expansion of
	$\left(\frac{1}{3}x^{\frac{1}{3}}\right)$	$\left(\frac{1}{3}+\frac{1}{2x^3}\right)^{18}$. The						
	(1)	$\frac{9}{4}$	(2)	$\frac{4}{9}$	(3)	$\frac{1}{4}$	(4)	$\frac{1}{9}$
10.	Let th	ne system of e	quations	x + 2y + 3z = 5,	2x + 3y -	z = 9,4x + 3y +	$\lambda z = \mu$	have infinite number of
		ons. Then $\lambda + 2\mu$						
	(1)	28	(2)	17	(3)	22	(4)	15
11.	The va	alue of $\int_0^1 (2x^3 -$	$3x^2 - x$	$(+1)^{\frac{1}{3}}dx$ is equal	to:			
	(1)	-1	(2)	2	(3)	0	(4)	1
12.	Let th	e locus of the m	idpoints	of the chords of	the circl	$x^2 + (y-1)^2 =$	1 drawr	from the origin intersect
	the lir	ne $x + y = 1$ at P		Then, the length				
	(1)	1	(2)	$\frac{1}{\sqrt{2}}$	(3)	$\frac{1}{2}$	(4)	$\sqrt{2}$
13.	Let f	$(x) = \begin{cases} x - 1, & x \text{ is} \\ 2x, & x \text{ is} \end{cases}$	even, $x \in$ sodd,	N. If for some a	.∈ N, ƒ	f(f(f(a))) = 21, t	then lin $x \rightarrow$	$ \underset{a^{-}}{\text{m}} \left\{ \frac{ x ^{3}}{a} - \left[\frac{x}{a}\right] \right\}, \text{ where [t]} $
	denot	es the greatest in	nteger le	ss than or equal	to t, is e	qual to:		
	(1)	225	(2)	121	(3)	169	(4)	144
14.	Let f	$(x) = \left 2x^2 + 5 \left x \right \right $	-3 , $x \in \mathbf{F}$	R . If m and n de	note the	number of poin	ts where	e f is not continuous and
	not di	ifferentiable resp	pectively,	then m + n is ec	jual to:			
	(1)	5				0	(4)	3
15.	If the	domain of the	function	n $f(x) = \frac{\sqrt{x^2 - 2}}{(4 - x^2)^2}$	$\frac{5}{1} + \log_{10}{10}$	$_{0}(x^{2}+2x-15)$ i	s (-∞,α)	$ \cup[eta,\infty)$, then $\alpha^2+\beta^3$ is
	equal							
	(1) 	150	(2)	175	(3)	125	(4)	140
16.	If $\int_{0}^{\frac{\pi}{3}} cc$	$\cos^4 x dx = a\pi + b^4$	$\sqrt{3}$, whe	re a and b are ra	tional n	umbers, then 9c	ι + 8b is	equal to:
	(1)	2	(2)	1	(3)	$\frac{3}{2}$	(4)	3
17.	Let S.	, denote the su	m of the	e first n terms of		2	on. If S	10 = 390 and the ratio of
				s 15 : 7, then S_{13}				
	(1)	790	(2)	690	(3)	800	(4)	890
18.	If z is	a complex numl	oer such	that $ \mathbf{z} \ge 1$, then	n the mir	nimum value of	$\left z + \frac{1}{2} (3 + \frac{1}{2}) \right $	+4i is:
	(1)	$\frac{5}{2}$	(2)	3	(3)	$\frac{3}{2}$	(4)	2

19. Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let the line passing through P and parallel to *y*-axis meet the circle $x^2 + y^2 = 9$ at point Q such that P and Q are on the same side of the *x*-axis. Then, the eccentricity of the locus of the point R on PQ such that PR : RQ = 4 : 3 as P moves on the ellipse, is:

(1)
$$\frac{13}{21}$$
 (2) $\frac{\sqrt{139}}{23}$ (3) $\frac{\sqrt{13}}{7}$ (4) $\frac{11}{19}$

20. Consider a $\triangle ABC$ where A(1, 3, 2), B(-2, 8, 0) and C(3, 6, 7). If the angle bisector of $\angle BAC$ meets the line BC at D, then the length of the project of the vector \overrightarrow{AD} on the vector \overrightarrow{AC} is:

(1)
$$\frac{\sqrt{38}}{2}$$
 (2) $\sqrt{19}$ (3) $\frac{39}{2\sqrt{38}}$ (4) $\frac{37}{2\sqrt{38}}$

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- **21.** The lines $L_1, L_2, ..., L_{20}$ are distinct. For n = 1, 2, 3, ..., 10 all the lines L_{2n-1} are parallel to each other and all the lines L_{2n} pass through a given P. The maximum number of points of intersection of pairs of lines form the set $\{L_1, L_2, ..., L_{20}\}$ is equal to _____.
- **22.** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} 8\hat{j} + 2\hat{k}$ and $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three vectors such that $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$. If the angle between vector \vec{c} and the vector $3\hat{i} + 4\hat{j} + \hat{k}$ is θ , then the greatest integer less than or equal to $\tan^2 \theta$ is _____.

23. If
$$\frac{dx}{dy} = \frac{1+x-y^2}{y}$$
, $x(1) = 1$, then 5x (2) is equal to _____

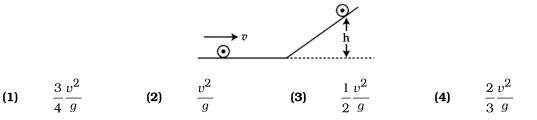
24. Let
$$f:(0,\infty) \to \mathbf{R}$$
 and $F(x) = \int_{0}^{x} t f(t) dt$. If $F(x^2) = x^4 + x^5$, then $\sum_{r=1}^{12} f(r^2)$ is equal to _____.

- **25.** Three points $O(0,0), P(a,a^2), Q(-b,b^2), a > 0, b > 0$, are on the parabola $y = x^2$. Let S_1 be the area of the region bounded by the line PQ and the parabola, and S_2 be the area of the triangle OPQ. If the minimum value of $\frac{S_1}{S_2}$ is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to _____.
- **26.** Let $A = I_2 2MM^T$ where *M* is a real matrix of order 2×1 such that the relation $M^TM = I_1$ holds. If λ is a real number such that the relation $AX = \lambda X$ holds for some non-zero real matrix X of order 2×1 , then the sum of squares of all possible values of λ is equal to _____.
- **27.** The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2y^2 = kx$ and $2y^2 = 2(y x)$ is maximum, is equal to _____.
- **28**. If three successive terms of G.P. with common ration r(r > 1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r] + [-r] is equal to _____.

29. If
$$y = \frac{(\sqrt{x}+1)(x^2-\sqrt{x})}{x\sqrt{x}+x+\sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$$
, then $96y'\left(\frac{\pi}{6}\right)$ is equal to _____.

30. Let ABC be an isosceles triangle in which A is at (-1, 0), $\angle A = \frac{2\pi}{3}$, AB = AC and B is on the positive

x-axis. If $BC = 4\sqrt{3}$ and the line *BC* intersects the line y = x + 3 at (α, β) then $\frac{\beta^4}{\alpha^2}$ is _____.

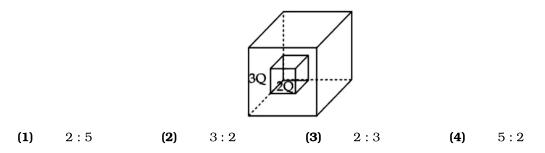

SUBJECT II: PHYSICS

MARKS: 100

SECTION-1

	SECTION-1							
This se	This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which							
ONLY	ONE CH	OICE is correct.						
31.	Condu	uctivity of a pho	otodiode	starts changing	g only if	the wavelengt	h of incide	nt light is less than 660
	nm. T	nm. The band gap of photodiode is found to be $\left(\frac{X}{8}\right)eV$. The value of X is:						
	(Giver	h, h = 6.6×10^{-3}	⁴ Js, e =	$1.6 \times 10^{-19}C$)				
	(1)	11	(2)	13	(3)	21	(4)	15
32.		comic gas (γ = 1. process is:	4) does	200 J of work	when it is	s expanded iso	obarically. 7	The heat given to the gas
	(1)	700 J	(2)	600 J	(3)	800 J	(4)	850 J
33.		ammeter, 5% nometer is G, the			=	through the	galvanomet	ter. If resistance of the
	(1)	$\frac{G}{199}$	(2)	199 G	(3)	200 G	(4)	$\frac{G}{200}$
34.	A galv	vanometer (G) of	2Ω res	istance is conn	ected in	the given circu	uit. The rat	io of charge stored in C_1
	and C	C_2 is:						
				C ₁ 4 μΙ	6 V			
	(1)	1	(2)	$\frac{1}{2}$	(3)	$\frac{3}{2}$	(4)	$\frac{2}{3}$
35.	From	the statements g	given bel	ow:				
	(A)	The angular r	nomentu	ım of an electro	n in n th o	rbit is an integ	gral multipl	le of h .
	(B)	Nuclear forces	s do not	obey inverse sq	uare law.			
	(C)	Nuclear forces	s are spi	n dependent.				
	(D)	Nuclear forces	s are cen	tral and charge	indepen	dent.		
	(E)	Stability of nu	icleus is	inversely propo	ortional to	the value of p	packing fra	ction.
	Choos	se the correct an	nswer fro	om the options g	given belo	ow:		
	(1)	(A), (C), (D), (E	E) only		(2)	(A), (B), (C),	, (E) only	
	(3)	(A), (B), (C), (D)) only		(4)	(B), (C), (D)	, (E) only	
36.				nces two forces	$\overrightarrow{F_1} = 5\hat{i}$	$+8\hat{j}+7\hat{k}$ and	$\vec{F}_2 = 3\hat{i} - 4$	$\hat{j} - 3\hat{k}$. The acceleration
		g on the body is:						
	(1)	$4\hat{i}+2\hat{j}+2\hat{k}$	(2)	$2\hat{i}+\hat{j}+\hat{k}$	(3)	2i + 3j + 3k	c (4)	-2i - j - k

37. A disc of radius R and mass M is rolling horizontally without slipping with speed *v*. It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is:

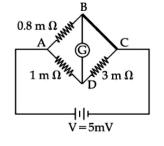

38. In a metre-bridge when a resistance in the left gap is 2Ω and unknown resistance in the right gap, the balance length is found to be 40 cm. On shunting the unknown resistance with 2Ω , the balance length changes by:

(1) 22.5 cm (2) 62.5 cm (3) 65 cm (4) 20 cm

39. A cricket player catches a ball of mass 120 g moving with 25 m/s speed. If the catching process is completed in 0.1 s then the magnitude of force exerted by the ball on the hand of player will be: (in SI unit):

- **(1)** 12 **(2)** 30 **(3)** 25 **(4)** 24
- **40.** If frequency of electromagnetic wave is 60 MHz and it travels in air along z direction then the corresponding electric and magnetic field vectors will be mutually perpendicular to each other and the wavelength of the wave (in m) is:
 - **(1)** 10 **(2)** 2.5 **(3)** 5 **(4)** 2

41. C_1 and C_2 are two hollow concentric cubes enclosing charges 2Q and 3Q respectively as shown in figure. The ratio of electric flux passing through C_1 and C_2 is:



- **42.** Train A is moving along two parallel rail tracks towards north with speed 72 km/h and train B is moving towards south with speed 108 km/h. Velocity of train B with respect to A and velocity of ground with respect to B are (in ms^{-1}):
 - (1) -50 and -30 (2) -50 and 30 (3) 50 and -30 (4) -30 and 50
- **43.** A microwave of wavelength 2.0 cm falls normally on a slit of width 4.0 cm. The angular spread of the central maxima of the diffraction pattern obtained on a screen 1.5 m away from the slit, will be:
 - (1) 45° (2) 60° (3) 30° (4) 15°
- **44.** A light planet is revolving around a massive star in a circular orbit of radius R with a period of revolution T. If the force of attraction between planet and star is proportional to $R^{-3/2}$ then chose the correct option:
 - (1) $T^2 \propto R^{7/2}$ (2) $T^2 \propto R^{5/2}$ (3) $T^2 \propto R^3$ (4) $T^2 \propto R^{3/2}$

- 45. If the root mean square velocity of hydrogen molecule at a given temperature and pressure is 2 km/s, the root mean square velocity of oxygen at the same condition in km/s is:
 - (1) 0.5 (2) 1.0 (3) 1.5(4) 2.0
- 46. A big drop is formed by coalescing 1000 small droplets of water. The surface energy will become:

(1) 100 times (2)
$$\frac{1}{100}$$
 th (3) 10 times (4) $\frac{1}{10}$ th

47. To measure the temperature coefficient of resistivity α of a semiconductor, an electrical arrangement shown in the figure is prepared. The arm BC is made up of the semiconductor. The experiment is being conducted at 25° and resistance of the semiconductor arm is $3m\Omega$. Arm BC is cooled at a constant rate of 2°C/s. If the galvanometer G shows no deflection after 10 s. then α is:

(4)

(1)
$$-1.5 \times 10^{-2} \circ C^{-1}$$
 (2) $-2 \times 10^{-2} \circ C^{-1}$
(3) $-1 \times 10^{-2} \circ C^{-1}$ (4) $-2.5 \times 10^{-2} \circ C^{-1}$

(3)
$$-1 \times 10^{-2} \circ C^{-1}$$

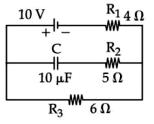
48. Match List-I with List-II.

	List-I	List-II					
(Number)			(Significant figure)				
(A)	1001	(I)	3				
(B)	010.1	(II)	4				
(C)	100.100	(III)	5				
(D)	0.0010010	(IV)	6				

Choose the **correct** answer from the options given below:

- (3) (4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
- Monochromatic light of frequency 6×10^{14} Hz is produced by a laser. The power emitted is $2 \times 10^{-3} W$. 49. How many photons per second on an average, are emitted by the source?

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)


(1) 7	$\times 10^{16}$	(2)	9×10^{18}	(3)	6×10^{15}	(4)	5×10^{15}
-------	------------------	-----	--------------------	-----	--------------------	-----	--------------------

- 50. A transformer has an efficiency of 80% and works at 10 V and 4 kW. If the secondary volage is 240 V, then the current in the secondary coil is:
 - (1) 13.13 A (2) 1.33 A (3) 15.1 A (4) 1.59 A

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

51. In an electrical circuit drawn below the amount of charge stored in the capacitor is μC .

- **52.** A particle initially at rest starts moving from reference point x = 0 along *x*-axis, with velocity *v* that varies as $v = 4\sqrt{x}$ m/s. The acceleration of the particle is _____ ms⁻².
- **53.** A mass *m* is suspended from a spring of negligible mass and the system oscillates with a frequency f_1 .

The frequency of oscillations if a mass 9 m is suspended from the same spring is f_2 . The value of $\frac{f_1}{f_2}$

54. One end of a metal wire is fixed to a ceiling and a load of 2 kg hands from the other end. A similar wire is attached to the bottom of the load and anther load of 1 kg hangs from this lower wire. Then the ratio of longitudinal strain of upper wire to that of the lower wire will be ______.

[Area of cross section of wire = 0.005 cm^2 ; $Y = 2 \times 10^{11} \text{ Nm}^{-2}$ and $g = 10 \text{ ms}^{-2}$]

- **55.** A coil of 200 turns and area 0.20 m^2 is rotated at half a revolution per second and is placed in uniform magnetic field of 0.01 T perpendicular to axis of rotation of the coil. The maximum voltage generated in the coil is $\frac{2\pi}{\beta}$ volt. The value of β is ______.
- **56.** A moving coil galvanometer has 100 turns and each has an area of 2.0 cm^2 . The magnetic field produced by the magnet is 0.01 T and the deflection in the coil is 0.05 radian when a current of 10 mA is passed through it. The torsional constant of the suspension wire is $x \times 10^{-5}$ N-m/rad. The value of x is _____.
- **57.** A uniform rod AB of mass 2 kg and length 30 cm at rest on a smooth horizontal surface. An impulse of force 0.2 Ns is applied to end B. The time taken by the rod to turn through at right angles will be $\frac{\pi}{x}s$, where x = _____.
- **58.** A particular hydrogen like ion emits the radiation of frequency 3×10^{15} Hz when it makes transition from

n = 2 to n = 1. The frequency of radiation emitted in transition from n = 3 to n = 1 is $\frac{x}{9} \times 10^{15}$ Hz, when

- **59.** In Yong's double slit experiment, monochromatic light of wavelength 5000Å is used. The slits are 1.0 mm apart and screen is placed at 1.0 m away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is $____ \times 10^{-6}$ m.
- **60.** Suppose a uniformly charged wall provides a uniform electric field of 2×10^4 N/C normally. A charged particle of mass 2 g being suspended through a silk thread of length 20 cm and remain stayed at a distance of 10 cm from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{x}} \mu C$ where x = ______.

 $[use g = 10 m/s^2]$

is __

SUBJECT III: CHEMISTRY

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

61. Given below are two statements:

Statement (I): Both metals and non-metals exist in p and d-block elements.

Statement (II): Non-metals have higher ionization enthalpy and higher electronegativity than the metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statements I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both **Statement I** and **Statement II** are false
- 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): In aqueous solutions Cr^{2+} is reducing while Mn^{3+} is oxidizing in nature.

Reason (R): Extra stability to half filled electronic configuration is observed than incompletely filled electronic configuration.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) (A) is true but (R) is false
- (2) (A) is false but (R) is true
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- **63.** Given below are two statements:

Statement (I): SiO_2 and GeO_2 are acidic while SnO and PbO are amphoteric in nature.

Statement (II): Allotropic forms of carbon are due to property of catenation and $p\pi - d\pi$ bond formation.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statements I is true but Statement II is false
- (2) Both **Statement I** and **Statement II** are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true
- **64.** The number of radial node/s for 3p orbital is:
 - (1) 4 (2) 3 (3) 2 (4) 1

65. Solubility of calcium phosphate (molecular mass, M) in water is W_g per 100 mL at 25 °C. Its solubility product at 25 °C will be approximately.

(1)
$$10^3 \left(\frac{W}{M}\right)^5$$
 (2) $10^5 \left(\frac{W}{M}\right)^5$ (3) $10^7 \left(\frac{W}{M}\right)^5$ (4) $10^7 \left(\frac{W}{M}\right)^5$

66.	Match	List-I with List-II.									
		List-I			List-II Use						
		Compound									
	(A)	(A) Carbon tetrachloride			(I) Paint remover						
	(B)	Methylene chlor	ide	(II)	Refrigerators	and air	conditio	ners			
	(C)	DDT		(III)	Fire extingui	sher					
	(D)	Freons		(IV)	Non Biodegra	adable in	secticide	2			
	Choos	e the correct answ	ver from th	ne opti	ons given belo	w:					
	(1)	(A)-(IV), (B)-(III),	(C)-(II), (D)	-(I)	(2)	(A)-(I),	(B)-(II), (C)-(III),	(D)-(IV)		
	(3)	(A)-(II), (B)-(III), (C)-(I), (D)-(IV)	(4)	(A)-(III)	, (B)-(I),	(C)-(IV)	, (D)-(II)		
67.	The fu	nctional group tha	at shows n	egative	e resonance eff	fect is:					
	(1)	–OR	(2) –C	ΟH	(3)	-COOH	ł	(4)	$-\mathrm{NH}_2$		
68.	[Co(N]	$(H_3)_6]^{3+}$ and $[CoF_6]$	3^{3-} are re	spectiv	vely known as:	:					
	(1)	Inner orbital cor	-								
	(2)	Spin paired Con		•	-						
	(3)	Outer orbital Co			-						
	(4)	Spin free Compl	-		_						
69.		of the following co			-	d-d trans	ition?				
	(1)	K ₂ CrO ₄	(2) K	2Cr2O	7 (3)	CuSO	4.5H20	(4)	KMnO	1	
70.	Lassai	igne's test is used :	for detectio	on of :							
	(1)	Phosphorous an	d halogens	s only							
	(2)	Nitrogen, Sulph	ur and Pho	osphor	ous only						
	(3)	Nitrogen, Sulph	ur and Pho	osphor	ous halogens						
	(4)	Nitrogen and Su	lphur only	T							
71.	Select	the compound fro	m the follo	wing t	hat will show:	intramole	ecular hy	drogen	ı bonding.		
				\sim	NO ₂						
	(1)	C_2H_5OH	(2)	0		(3)	NH_3		(4)	H_2C	
				\checkmark	ОН						
72.	In the	given reaction ide	ntify A and	ΙB							
	н.	$H_2 + A \xrightarrow{Pd/C} CH_3 = C \xrightarrow{C_2H_5} H$									
	$H_2 + 1$	$A \longrightarrow H$	-С н								
	СН ₃ -	$-C \equiv C - CH_3 + H_2$	Na/Liqui	d NH3	→"B"						
	(1)	A : 2 – Pentyne			2 – butene						
	(2)	A : n – Pentane			2 – butene						
	(3)	A : 2 – Pentyne			s - 2 - butene						
	~~/		2		,						

Vidyamandir Classes: Innovating For Your Success

- **73.** The set of meta directing functional groups from the following sets is:
 - (1) $-NO_2$, -CHO, $-SO_3H$, -COR (2) -CN, $-NH_2$, -NHR, $-OCH_3$
 - (3) -CN, -CHO, -NHCOCH₃, -COOR (4) -NO₂, -NH₂, -COOH, -COOR
- **74.** Which among the following has highest boiling point?
 - (1) $H_5C_2 O C_2H_5$ (2) $CH_3CH_2CH_2CH_3$
 - (3) $CH_3CH_2CH_2CHO$ (4) $CH_3CH_2CH_2CH_2 OH$
- **75.** Given below are two statements:

Statement (I): A π bonding MO has lower electron density above and below the inter-nuclear axis.

Statement (II): The π^* antibonding MO has a node between the nuclei.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are true
- (2) Statements I is true but Statement II is false
- (3) Statement I is false but Statement II is true
- (4) Both **Statement I** and **Statement II** are false
- **76.** The transition metal having highest 3rd ionisation enthalpy is:
 - (1) V (2) Fe (3) Mn (4) Cr

77.
$$C_2H_5Br \xrightarrow{\text{alc.KOH}} A \xrightarrow{Br_2} B \xrightarrow{KCN} C \xrightarrow{H_3O^+} D$$

Acid D formed in above reaction is:

(1) Succinic acid (2) Oxalic acid (3) Gluconic acid (4) Malonic acid

78. Given below are two statements:

Statement (I): Dimethyl glyoxime forms a six-membered covalent chelate when treated with $NiCl_2$ solution in presence of NH_4OH .

Statement (II): Prussian blue precipitate contains ion both in (+2) and (+3) oxidation states.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

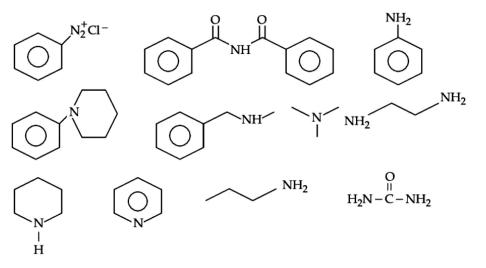
- (1) Statements I is true but Statement II is false
- (2) Both **Statement I** and **Statement II** are false
- (3) Both **Statement I** and **Statement II** are true
- (4) Statement I is false but Statement II is true
- **79.** The strongest reducing agent among the following is:

(1)	PH_3	(2)	NH_3	(3)	BiH ₃	(4)	SbH_3
-----	--------	-----	--------	-----	------------------	-----	---------

80. Match List- with List-II.

	List-I	List-II				
Reactants			Product			
(A)	Phenol, Zn/ Δ	(I)	Salicylaldyhyde			
(B)	Phenol, CHCl ₃ ,NaOH,HCl	(II)	Salicylic acid			
(C)	Phenol, CO ₂ , NaOH, HCl	(III)	Benzene			
(D)	Phenol, Conc. HNO ₃	(IV)	Picric acid			

Choose the **correct** answer from the options given below:


(1)	(A)-(IV), (B)-(II), (C)-(I), (D)-(III)	(2)	(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

(3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)

SECTION-2

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- **81.** Total number of isomeric compounds (including stereoisomers) formed by monochlorination of 2-methylbutane is _____.
- **82.** Mass of ethylene glycol (antifreeze) to be added to 18.6 kg of water to protect the freezing point at -24°C is ______ kg (Molar mass in g mol⁻¹ for ethylene glycol 62, K $_f$ of water = 1.86 K kg mol⁻¹)
- **83.** For a certain reaction at 300 K, K = 10, then ΔG° for the same reaction is _____ ×10⁻¹ kJ mol⁻¹. (Given R = 8.314 JK⁻¹ mol⁻¹)
- **84.** The number of tripeptides formed by three different amino acids using each amino acid once is ______.
- **85.** 10 mL of gaseous hydrocarbon on combustion gives 40 mL of CO₂(g) and 50 mL of water vapour. Total number of carbon and hydrogen atoms in the hydrocarbon is ______.
- 86. The amount of electricity in Columb required for the oxidation of 1 mol of H_2O to O_2 is _____ ×10⁵C.
- **87.** Number of compounds which give reaction with Hinsberg's reagent is ______.

- **89.** Consider the following redox reaction:

 $\mathrm{MnO}_4^- + \mathrm{H}^+ + \mathrm{H_2C_2O_4} \rightleftharpoons \mathrm{Mn^{2+}} + \mathrm{H_2O} + \mathrm{CO_2}$

The standard reduction potentials are given as below (E_{red}°) :

$$E^{\circ}_{MnO_4^-/Mn^{2+}} = +1.51 V$$

 $E^{\circ}_{CO_2^-/H_2C_2O_4} = -0.49 V$

In the equilibrium constant of the above reaction is given as $K_{eq} = 10^{x}$, then the value of x =_____. (nearest Integer)

90.	The following data were obtained during the first order thermal decomposition of a gas A at constant volume:						
	$A(g) \rightarrow 2B(g) + C(g)$						
	S. No.	Time/s	Total pressure/(atm)				
	1.	0	0.1				
	2.	115	0.28				
	The rate const	ant of the reaction	on is $\times 10^{-2} \mathrm{s}^{-1}$ (nearest integer)				